CE Code This document approved for CUSTOMER distribution.

00 Do not distribute to third parties without written permission from EControls.

EConitrols.

Engineering Reference Document

ECOM™ Developer’s APl Reference Guide

Document Number ER000092_00

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00:

CUSTOMER

(see detail on Title Page)

ECOM™ Developer’s API

Doc. No. ERO00092_00 Rev C

Reference Guide Page 2 of 18
CHANGE RECORD
SEC./
REV | ORIG APPR. 1 APPR. 2 o DESCRIPTION DATE
A | C.LELA All INITIAL RELEASE 2008.08.21
B. PEARSON All DOCUMENT FORMAT UPDATES 2014.11.17
C |B. PEARSON| T. BRANYON All UPDATE TO REFLECT ECOM2 PRODUCT 2018.08.21

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 3 of 18

TABLE OF CONTENTS

1 PURPOSE....... o iiiiiiiitititireiteteeteectecsestestassastessassassassassssssssssssassassassassassassancas 5
2 INTRODUCTION — LIBRARY OVERVIEW.......cccteiieiieiieieiencenctnctectecnentessasessescascances 5
3 ECOM™ INITIALIZATION.....c.ccieiiieitnitectectectestestestessastencescesssssssssassassassassassassancas 6
3.1 (U Yot o] ol @7 AN\ [@] o T=] o F TR 6
3.1.1 [0 = (o T4lo 1 [LSRR 6
3.1.2 DX Yol [o) A [0 PR 6
3.2 Function CANOPENFIITEredcoovvviiiiiiiiiiiiiiiiiiiicceeeeeceeeeeeeeeeeeeeeeeeee e 6
3.2.1 [0 =l (o To [0 TP PP PPTRPPPRII 6
3.2.2 DBSCIIPTION: ... e e s e e e s e s e s s s s e e s e e s s s s e e s e e s ss s sanssssnnnen 6
33 Ve Tor oY I =T =1 [0 1= o O 7
3.3.1 [0 = (o o 1 [LSRR 7
3.3.2 DBSCIIPTION: ... e e e e e e e s e s e s s s e e s s e s s s s e e s s e asa s nansnnnnnen 7
34 FUNCLION ClOSEDEVICE ...cuuniiiiiieeie e e e e e e e e eaaaes 7
3.4.1 [0 =Tl (o[o 14 (o] ¢ LT 7
3.4.2 [L=X Yol [o1 ¥ [0 LR 7
3.5 FUNCLION CANSETUPDEVICE ...uuiieiiiiceiee ettt e e e e e aaa s 7
3.5.1 [0 = (o To [0 TP PP PPURPPPRII 8
3.5.2 DIBSCIIPTION: ... e e e e e s e e e e s e s e e s e e s e s e s s s s e s e s e e s asa s sassssnnes 8
4 TRANSMISSION AND RECEPTION OF CAN MESSAGES......ccccceiririreninninninnianiannanes 9
4.1 Function CANTransSmMitMesSage: ... vuu i e 9
4.1.1 DECIAIALION: ..ottt ettt e e s e et e e st e s sase e s ateeeaneenaee s 9
4.1.2 [L=X Yol [o1 1 [0 LA 9
4.1.3 REQUITEA SEIUCLUIE: ...ttt ettt ettt e et e e e satta e e e s staeeeensseees 9
4.2 Function CANTransmitMessageEX:ocvuviiiiiiiiiiiee e 10
4.2.1 [0 =T (o o 1 (o) s TSP PP OPPR IR 10
4.2.2 J =2l 4]0 [0 LRSS 10
4.2.3 REQUITEA SEIUCLUIE: ...ttt ettt ettt e e e s st e e st e e e s sasaaaessasees 10
4.3 Function CANRECEIVEMESSAZEEX: ..ccvuuiieiiiiiiiiiee et e e eaeas 11
4.3.1 [0 =T (o o 1 [s TP PP 11
4.3.2 I L2l 4]0 [0 LRSS 11
4.4 FUNCtioN CANRECEIVEIMESSAZE: ..uuuiiiiiiiiiie ettt et e e e e e e e aaas 11
4.4.1 DECIAIALION: ..ottt ettt ettt e e e st e e st e s sata e s sate e s ate e s e e s 11
4.4.2 LD L=X Yol /[1 [0 LA 11

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C

(see detail on Title Page) Reference Guide Page 4 of 18
5 TRANSMISSION AND RECEPTION OF SERIAL DATAccceiieiiiictectentenieieniancenns 12
5.1 FUNCEION SErIalWIITe: oo e e e e e eaaees 12
5.1.1 DECIAIAEION: ...ttt ettt et e st e et e e st e e et e e e e a e e nanees 12
51.2 1D L=X Yol [o) 1[0 PO 12
5.2 FUNCLioN SerialRead:coviiiiieee e e e e e e e eeeaaes 12
5.2.1 DECIAIAEION: ...ttt ettt ettt e et e e et e e st e e et e e e et aa e e e anees 12
5.2.2 DBSCIIPTION: ... e e s e e e e s e e e s e s e e e s e s e s e s e s e s e s e s e s e s e s e s e s e s e nenennan 12
6 SEARCHING AND ENUMERATING DEVICESccciiieiieieiencincreirectentesiessesancencanes 13
6.1 Function StartDeviceSearch: ... e 14
6.1.1 [0 =T (o o 1 [PP TSPR 14
6.1.2 DBSCIIPTION: ... e e e e s e e e e e s e s e s e e s s s s s s s e e e s s e s sassssnsnnsnnnen 14
6.2 Function CloseDeviceSearch:coooviiiiiiiiiiiie e e eeaaans 14
6.2.1 [0 =Tl (o 4o [0 1 LU PP PPPPPPP 14
6.2.2 [DL=X Yol] o1 ¥ [0 HEP 14
6.3 FUNCtion FINANEXTDEVICE: ...cceiieiiiieeeeeeee ettt e 15
6.3.1 [0 =T (o o 1 [USRS 15
6.3.2 DBSCIIPTION: ... e e e e e s e e e e e s e s e s e e s s s s s s s e e e s s s e s s s snsssnsnnnen 15
6.3.3 o TV =30 B g (ot 1Y ¢ =R 15
7 MISCELLANEOUS FUNCTIONS. ... o iiiiiiiiiiniieiieiieieietetsssssssssiassassassassassassassans 16
7.1 U o Toi ol g W CT=Td = g o] ¢ |V (=T Y= T PN 16
7.1.1 [0 =T (o o 1 [0 s LTRSS PP OPPR PP 16
7.1.2 [L=X Yol '] o1 ¥ [0 1A 16
7.1.3 REQUIIEA SEIUCEUIE: ...ttt ettt e e e e et e sane e 16
7.2 Function GetDeVvicelnfo: ... i e e 17
7.2.1 DECIAIALION: ...ttt ettt ettt e s e et e st e st e et e st e e nanes 17
7.2.2 I L=X Yol] o1 ¥ [0 1A 17
7.3 Function SetCallbackFuncCtion:..........cceviiiiiiiiiiiiiiiiiiicceceeeeeececeeeeeeeeeeeee e 17
7.3.1 [0 =T (o o (o) s TSP UPPR PP 17
7.3.2 J =2l ¢]2 [0 LRSS 17
7.3.3 CAllBACK DECIAIALION: ...ttt ettt e st e e e st e e st e e e s ssseees 17
7.3.4 (00| [oTe lol QI DL=X Yol 4] o1 1 Lo) s PR 17
7.4 FUNCLION GETQUEUESIZE: ...uniieieiee et e e e e e e 18
7.4.1 [0 =T (o o 1 [s TP PP 18
7.4.2 JD =2l 4]0 [0 LRSS 18
7.5 Function GetFriendlyErrorMeSSage: ..u.uiiiiiriieeeeeeriieee et e et e eere e e eeara s 18
7.5.1 DECIAIALION: ..ottt ettt ettt e e st e et e e sate e e ateesateenate e s 18
7.5.2 T L=X Yol '] 1 ¥ o] LA 18

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 5 of 18

1 PURPOSE

This document presents reference information for developers who wish to incorporate the
ECOM™ CAN-to-USB hardware interface into their own software for sending and receiving CAN
packets. The material below includes ECOM™ library function declarations, descriptions, and code
structure pertaining to the DLL/API programmer's interface for the ECOM™ hardware device.

2 INTRODUCTION - LIBRARY OVERVIEW

The functions provided by the ECOM™ library (ecommlib.dll) are exported using the __stdcall
calling convention which is the convention used by the majority of the Microsoft Windows API.
This means that any programming language and environment that can make calls to the Windows
APl can also use the ECOM™ library.

NOTE:
@ For programming languages or compilers that cannot automatically load the library
functions, try searching for examples of using the Windows functions LoadLibrary and
GetProcAddress for your desired programming language.

Most of the library functions expect a HANDLE, which represents a single connected/opened
ECOM™ device, as their first parameter. In order to obtain a HANDLE to be passed to the library
functions, you must first call CANOpen for the respective ECOM™ device. Make sure to call
CloseDevice once for each successful call to CANOpen, as each ECOM™ device can only be opened
by one process at a time.

Most functions, besides the device open functions, return a single BY7E value that represents the
function’s return status code. For a complete listing of all possible return codes along with detailed
descriptions, refer to the defined codes in the “ecommlib.h” file. Additionally, the function
GetFriendlyErrorMessage can be called from within code to get a text based description of the
error. In all functions, the BY7TE data type represents an unsigned 8-bit value, and the DWORD
and ULONG data types represent an unsigned 32-bit value.

This document groups all the library functions according to their intended purpose, as follows:

e ECOM™ Initialization

e Transmission and reception of CAN messages
e Transmission and reception of serial data

e Searching and enumerating devices

e Miscellaneous Functions

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 6 of 18

3 ECOM™ INITIALIZATION
3.1 Function CANOpen:

3.1.1 Declaration:

HANDLE CANOpen (ULONG SerialNumber, BYTE BaudRate, BYTE *ErrorReturnCode)

3.1.2 Description:

This function is used to initiate an ECOM device in CAN mode. To open
the first available device, pass 0 for the SerialNumber parameter,
otherwise pass the desired device serial number. Each device has a
unigque serial number that is printed on the underside of the ECOM.

The function will initialize the ECOM device on the CAN bus with the
respective baud rate. If an error occurs, a NULL value will be returned
by the function. On successful connection, it will return a HANDLE to
the ECOM device that can be used for all respective function calls. The
HANDLE must be closed with the CloseDevice function once for every
successful call to CANOpen.

The following are the allowed values to pass for BaudRate:
#define CAN BAUD 250K 0
#define CAN BAUD 500K 1
#define CAN BAUD 1MB 2
#define CAN BAUD 125K 3

ErrorReturnCode receives a reference to the return ErrorCode upon the
functions return. This parameter can be passed a NULL reference if you
are not interested in the return error code.

3.2 Function CANOpenFiltered

3.2.1 Declaration:

HANDLE CANOpenFiltered (ULONG SerialNumber, BYTE BaudRate, DWORD
AcceptanceCode, DWORD Acceptancemask, BYTE *ErrorReturnCode)

3.2.2 Description:

This function behaves exactly like CANOpen except that it allows a
hardware CAN receive filter to be applied in the AcceptanceCode and
AcceptanceMask parameters. See the Philips SJA1000 CAN transceiver data
sheet for information on how the acceptance filter is defined.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 7 of 18

3.3 Function SerialOpen

3.3.1 Declaration:

HANDLE SerialOpen (USHORT SerialNumber, BYTE BaudRate, BYTE
*ErrorReturnCode) ;

3.3.2 Description:

This function behaves exactly like CANOpen except that instead opens the
ECOM as a serial device and initiates communication using the serial
port. The serial communication lines ARE NOT RS232, but rather 5V TTL
lines; therefore, they cannot be used to communicate directly with an RS-
232 port on a PC. The serial feature is intended to communicate directly
with the standard hardware on most microcontrollers without the
additional cost of having to add an RS-232 transceiver.

Each ECOM device can be connected as either CAN or Serial, but not both!
Passing the HANDLE returned by SerialOpen to a CAN based function will
return an error code.

The following are the allowed values to pass for BaudRate:
#define SERIAL BAUD 2400 0

#define SERIAL BAUD 4800

#define SERIAL BAUD 9600

1
2
#define SERIAL BAUD 19200 3
#define SERIAL BAUD 28800 4
#define SERIAL BAUD 38400 5

6

#define SERIAL BAUD 57600

3.4 Function CloseDevice

3.4.1 Declaration:

BYTE CloseDevice (HANDLE DeviceHandle)

3.4.2 Description:

This function closes an ECOM device HANDLE that was obtained using
CANOpen, CANOpenFiltered, or SerialOpen. For devices opened as CAN, this
function will also disconnect the device from the CAN bus. CloseDevice
must be called once for every HANDLE that is obtained or else the device
may be left open and another program will not be able to use it. Failure
to call CloseDevice for every HANDLE obtained will also result in a
memory leak until the DLL library is unloaded.

3.5 Function CANSetupDevice

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 8 of 18

3.5.1 Declaration:

BYTE CANSetupDevice (HANDLE DeviceHandle, BYTE SetupCommand, BYTE
SetupProperty)

3.5.2 Description:

This function is used to alter the behavior of the CANTransmitMessage and
CANTransmitMessageEx functions. SetupCommand should be set to zero
(CAN_CMD TRANSMIT) for all calls to this function - currently the only
supported SetupCommand is CAN CMD TRANSMIT.

For the CAN_CMD TRANSMIT SetupCommand, the following are valid values for

SetupProperty:
#define CAN PROPERTY ASYNC 0
#define CAN PROPERTY SYNC 1

CAN_PROPERTY ASYNC: Tells the CANTransmit functions to behave
asynchronously, this means that calls to CANTransmit can return before
the message is actually transmitted on the CAN bus.

CAN_PROPERTY SYNC: This property tells the CANTransmit functions to wait
indefinitely for the ECOM device to send the message before returning
back to the caller.

It is recommended that users use the CAN PROPERTY ASYNC method. The
default after calling CANOpen is synchronous mode (CAN PROPERTY SYNC), so
this function must be called to switch operation to asynchronous mode.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 9 of 18

4 TRANSMISSION AND RECEPTION OF CAN MESSAGES

4.1 Function CANTransmitMessage:

4.1.1 Declaration:

BYTE CANTransmitMessage (HANDLE cdev, SFFMessage *message)

4.1.2 Description:

This function will transmit a CAN message in Short Frame Format (SFF) 11-
bit mode. Depending on the configuration, the message may be transfered
in asynchronous or synchronous mode (See CANSetupDevice for explanation).
In asynchronous mode the calling program will immediately be given back
control but no error detection or indication of whether the message was

sent successfully will be given. 1In synchronous mode, the function will
wait until the ECOM device indicates that the message was successfully
sent (or an error indicating otherwise will be returned). In both modes,

the CAN hardware will be put in automatic retransmit mode, so that
message will be retried until it is sent out on the bus.

4.1.3 Required Structure:
typedef struct
{
BYTE IDH;
BYTE IDL;
BYTE Datal8];

BYTE Options; //BIT 6 remote frame bit

//BIT 4 = self-reception bit
BYTE Datalength;
DWORD TimeStamp; //Timestamp with 64us resolution

} SFFMessage;

Fill this structure with the desired 11-bit CAN data. The upper 5 bits
of IDH are not used and ignored since the message is only 1l-bits.
Datalength must be set to a valid CAN value between 0 and 8, and the
corresponding data should be set as well. For transmit messages, the
TimeStamp field has no meaning. For receive messages, the TimeStamp will
be set to a value representing the number of 64us ticks that have passed
since the call to CANOpen or CANOpenFiltered. The timestamp is a
hardware timestamp captured during the CAN receive interrupt. To enable
transmission of remote frame, set bit 6 (base 0) of the Options flag. To
enable hardware based self-reception, set bit 4 of the Options flag.
Self-reception allows for the reception of all self-transmitted messages
and it is hardware based - a receive interrupt is generated and received
message 1s processed just like other incoming packets.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C

(see detail on Title Page) Reference Guide Page 10 of 18

4.2 Function CANTransmitMessageEx:

4.2.1 Declaration:
BYTE CANTransmitMessageEx (HANDLE cdev, EFFMessage *message)

4.2.2 Description:

This function will transmit a CAN message in Extended Frame Format (EFF)
29-bit mode. CANTransmitEx behaves otherwise in the exact manner as

CANTransmit.

4.2.3 Required Structure:

typedef struct
{
DWORD ID; //29-bit ID, upper 3 bits are ignored
BYTE datal8];
BYTE options; //BIT 6 = remote frame bit
// BIT 4 = self-reception
BYTE Datalength;
DWORD TimeStamp; //Timestamp with 64us resolution

} EFFMessage;

Fill this structure with the desired 29-bit CAN message data. Aside from
the ID field being 29-bits, all other fields have the same meaning as in

the SFFMessage structure.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 11 of 18

4.3 Function CANReceiveMessageEx:

4.3.1 Declaration:

BYTE CANReceiveMessageEx (HANDLE cdev, EFFMessage *message)

4.3.2 Description:

This function will read one message from the current EFF (29-bit) receive
buffer.

On success, the function will fill the message structure with the oldest
CAN packet in the EFF buffer and return 0. It will return

CAN NO RX MESSAGES if there are no messages in the EFF buffer. See the
explanation of CANTransmitMessageEx for a description of the EFFMessage
structure.

To retrieve how many messages are currently in the EFF buffer, the
function GetQueueSize can be called with CAN GET EFF SIZE passed for the
flag.

4.4 Function CANReceiveMessage:

4.4.1 Declaration:

BYTE CANReceiveMessage (HANDLE cdev, SFFMessage *message)

4.4.2 Description:

This function will read one message from the current SFF (1l-bit) receive
buffer.

On success, the function will fill the message structure with the oldest
CAN packet in the SFF buffer and return 0. It will return

CAN NO RX MESSAGES if there are no messages in the SFF buffer. See the
explanation of CANTransmitMessage for a description of the SFFMessage
structure.

To retrieve how many messages are currently in the SFF buffer, the
function GetQueueSize can be called with CAN GET SFF SIZE passed for the
flag.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C

(see detail on Title Page) Reference Guide Page 12 of 18

5 TRANSMISSION AND RECEPTION OF SERIAL DATA

5.1 Function SerialWrite:

5.1.1 Declaration:
BYTE SerialWrite (HANDLE DeviceHandle, BYTE *DataBuffer, LONG *Length);

5.1.2 Description:

This function will write a buffer out the serial port of an ECOM device
that has been opened using SerialOpen.

Pass the array of data to send in DataBuffer and pass the length of the
data array in Length. On success, the function will return 0 and will
set Length to the number of data bytes that were actually sent. Even if
there is a non-zero (error) return code, Length will have been set and

some bytes may have still been sent.

5.2 Function SerialRead:

5.2.1 Declaration:

BYTE SerialRead (HANDLE DeviceHandle, BYTE *DataBuffer, LONG
*BufferlLength) ;

5.2.2 Description:

This function will read data that has been received by the serial port
for an ECOM device that has been opened using SerialOpen.

Pass a BYTE array that will receive that data in DataBuffer and pass the
length of the data array in BufferLength. On success, the function will
return 0 and will set Length to the number of data bytes that were
actually filled in the buffer.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 13 of 18

6 SEARCHING AND ENUMERATING DEVICES

The functions StartDeviceSearch, FindNextDevice, and CloseDeviceSearch are used to list all
ECOM™ devices that are connected to the respective computer. To perform a search, call
StartDeviceSearch to obtain a DEV_SEARCH_HANDLE. Then call FindNextDevice using the handle
until FindNextDevice reports that there are no more devices left to retrieve. Each successful call to
FindNextDevice will fill a Devicelnfo structure which contains information about the respective
device. When done listing devices, make sure to call CloseDeviceSearch with the respective handle
to properly clean-up and free memory used by the search.

Below is an example that will list all ECOM™ devices that are attached to the computer.

#include "ecommlib.h"™ //Include definitions for constants and functions used by
the ECOM

int ListECOMDevices ()
{
//structure that will be used to retrieve information about each device

DevicelInfo deviceInfoStruct;

//Obtain a search handle that can be used to retrieve ALL connected ECOM
devices.

DEV_SEARCH HANDLE searchHandle = StartDeviceSearch (ECOM FIND ALL);

//Check for errors
if (searchHandle == NULL)
{
printf ("Unexpected error allocating memory for device search\n");

return -1;

//Now retrieve each attached device until there are no more left
//When the searching is done, it will return ECI NO MORE DEVICES

int deviceCount = 0;

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 14 of 18

6.1 Function StartDeviceSearch:

6.1.1 Declaration:
DEV_SEARCH HANDLE StartDeviceSearch (BYTE Flag);

6.1.2 Description:

This function is used to start a device search that can be used to list
every device that is attached to the current computer.

To start a search, create a handle by passing the type of search

(FIND ALL, FIND OPEN, or FIND UNOPEN) you wish to perform in the Flag
parameter of StartDeviceSearch. Then call FindNextDevice repeatedly with
the respective DEV_SEARCH HANDLE and each call to FindNextDevice will
return the next connected device until no more are left. When all have
been listed, FindNextDevice will return ECI_NO MORE DEVICES.

6.2 Function CloseDeviceSearch:

6.2.1 Declaration:
BYTE CloseDeviceSearch (DEV _SEARCH HANDLE SearchHandle);

6.2.2 Description:

This function is used to close a device search that has been started
using the StartDeviceSearch function. This function must be called once
for each DEV_SEARCH HANDLE obtained using StartDeviceSearch. It is used
to free up resources and memory used by the device search functions.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 15 of 18

6.3 Function FindNextDevice:

6.3.1 Declaration:

BYTE FindNextDevice (DEV_SEARCH HANDLE SearchHandle, DeviceInfo
*devicelInfo);

6.3.2 Description:

This function is used to retrieve information about each ECOM device that
is attached to the computer.

Call this function repeatedly for a given DEV SEARCH HANDLE until the
function returns ECI NO MORE DEVICES. Each call that returns

ECI_NO ERROR will fill the DeviceInfo structure with information about
the respective device.

6.3.3 Required Structure:
typedef struct
{

ULONG SerialNumber; //Device serial number

BYTE CANOpen; //1is device opened as CAN

BYTE SEROpen; //1is device opened as Serial
BYTE reserved; //reserved for future use

BYTE SyncCANTx; //always FALSE - Legacy support

HANDLE DeviceHandle; //always NULL when returned by this function
- Legacy support, it used to return an opened device’s handle, but this
was not valid across multiple processes, so it has been removed
altogether to avoid confusion. Each process must keep track of its open
device HANDLES

BYTE reserved[10]; //reserved for future use

} DeviceInfo;

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 16 of 18

7 MISCELLANEOUS FUNCTIONS

7.1 Function GetErrorMessage:

7.1.1 Declaration:

BYTE GetErrorMessage (HANDLE DeviceHandle, ErrorMessage *ErrorMessage);

7.1.2 Description:

This function will read one error message from the current error message
buffer.

On success, the function will fill the message structure with the oldest
error frame in the buffer and return 0. It will return
CAN_NO ERROR MESSAGES if there are no messages in the error buffer.

To retrieve how many messages are currently in the error buffer, the
function GetQueueSize can be called with CAN GET ERROR SIZE passed for

the flag.

7.1.3 Required Structure:
typedef struct
{

unsigned int ErrorFIFOSize; //number of remaining error messages

BYTE ErrorCode; //See “ErrorMessage Control Bytes” in ecommlib.h
for more info

BYTE ErrorData;
double Timestamp; //Timestamp when error was captured

BYTE reserved[2]; //Reserved for future use

} ErrorMessage;

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 17 of 18

7.2 Function GetDevicelnfo:

7.2.1 Declaration:

BYTE GetDevicelInfo (HANDLE DeviceHandle, DevicelInfo *devicelInfo);

7.2.2 Description:

This function will fill the DeviceInfo structure with information about
the device that is referenced by DeviceHandle. See the FindNextDevice
function for a description of the DeviceInfo structure.

7.3 Function SetCallbackFunction:

7.3.1 Declaration:

BYTE SetCallbackFunction (HANDLE DeviceHandle, pMessageHandler
*ReceiveCallback, void *UserData):;

7.3.2 Description:

This function assigns a “callback function” that will be executed by the
DLL everytime a new CAN, Serial, or Error message is received.

7.3.3 Callback Declaration:

typedef BYTE (stdcall *pMessageHandler) (HANDLE DeviceHandle, BYTE Flag,
DWORD FlagInfo, void* UserData);

7.3.4 Callback Description:

The assigned callback function is executed everytime a new CAN, Serial,
or Error message 1is received. The Flag parameter will be set to

CAN EFF MESSAGES, CAN SFF MESSAGES, CAN ERR MESSAGES, or

SER BYTES RECEIVED to indicate which type of message was just received
and the FlagInfo parameter will indicate how many messages are in the
respective message buffer. UserData is the same value that was set in
the SetCallbackFunction call.

Warning: The ReceiveCallback function is called in the context of a
unigque and high-priority thread; therefore, you must ensure that there
are no concurrency issues between data that is accessed within the
callback and the rest of your application. Users who do not understand
threads and critical sections should not use this function. Also, ensure
that the callback function is executed quickly with no waiting or data
overruns can oOcCcur.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

00: CUSTOMER ECOM™ Developer’s API Doc. No. ER000092_00 Rev C
(see detail on Title Page) Reference Guide Page 18 of 18

7.4 Function GetQueueSize:

7.4.1 Declaration:

int GetQueueSize (HANDLE DeviceHandle, BYTE Flag);

7.4.2 Description:

Call this function with a valid DeviceHandle and with the Flag parameter
set to one of the following values in order to retrieve information about
the devices buffers/queues. The respective value i1s returned or -1 if an
error occurs.

FOR DEVICES OPENED AS CAN

CAN_GET _EFF SIZE //Get message count in EFF buffer
CAN_GET MAX EFF SIZE //Get max size of the EFF buffer
CAN GET_SFF_SIZE //Get message count in SFF buffer
CAN GET MAX SFF SIZE //Get max size of the SFF buffer
CAN GET ERROR SIZE //Get message count in error buffer

CAN GET MAX ERROR SIZE //Get max size of error buffer

CAN GET TX SIZE //Get number of messages waiting to be
transmitted (both SFF and EFF)

CAN _GET MAX TX SIZE //Get max size of transmit buffer

FOR DEVICES OPENED AS SERIAL

SER GET RX SIZE //Get byte count in RX buffer

SER_GET MAX RX SIZE //Get max byte count of RX buffer

SER_GET TX SIZE //Get number of bytes waiting to be transmitted
SER_GET MAX TX SIZE //Get max size of transmit buffer

7.5 Function GetFriendlyErrorMessage:

7.5.1 Declaration:

void GetFriendlyErrorMessage (BYTE ErrorCode, char *ErrorString, int
ErrorStringSize) ;

7.5.2 Description:

Use this function to retrieve a string based error description for any

error code that is returned by any of the functions in this DLL. Pass a
character array for ErrorString and the length of the array in
ErrorStringSize. The function will then fill a description into
ErrorString that will be NULL terminated to indicate the end of the
string.

EControls LLC. Confidential and / or proprietary information. Do not copy or distribute without prior written approval.

